

Use of Artificial Intelligence for Census Data Processing

- A study on automatic coding of industry & occupation classification -

The 31st PCC, Nov. 30. 2022

Minju Kim, Eunsook Jung (KOSTAT Population Census Division)

> Korea's census reports on industry & occupation

- KOSTAT has been collecting industry & occupation data through census since 1960 (20% of population)
- Takes a long time to classify the data due to a big amount of self responses* which aren't refined well * Self response rate in Korea: (2015) 48.6%, (2020) 43.9%

Data collection

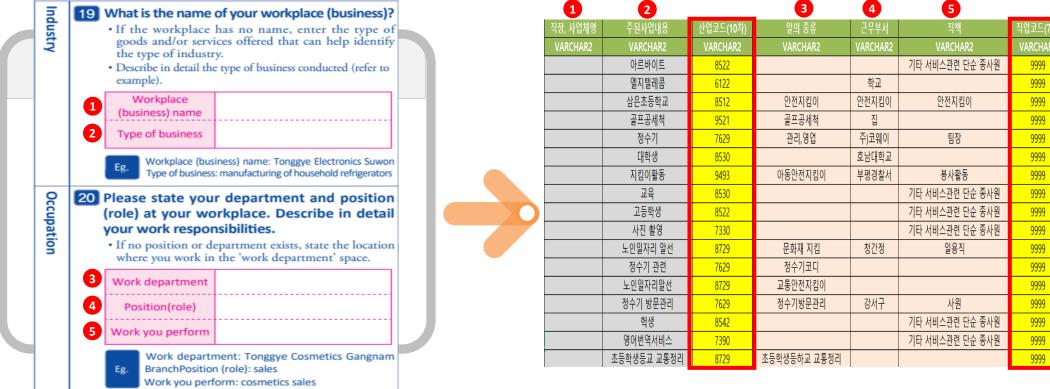
Entering text at field enumeration or internet/telephone survey

Survey items

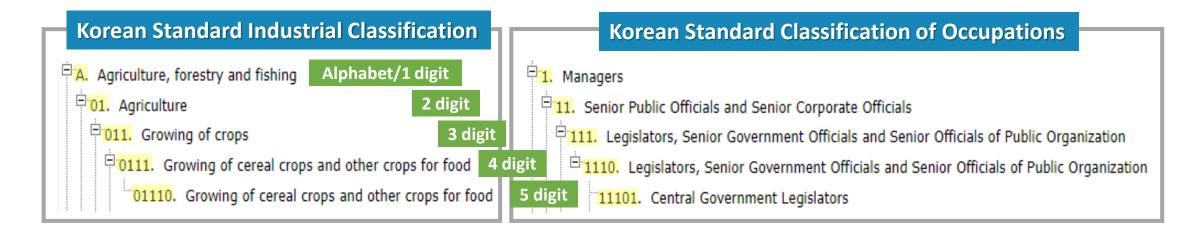
- Industry: business name, business area
 - Occupation: position, department, individual task

Data processing

Code classification at the editing step (4 digits)


Coding procedures

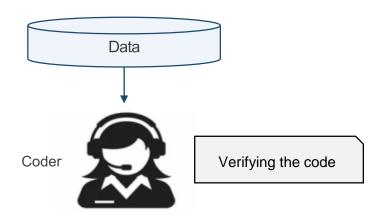
- 1 Industry coding
- ② Occupation coding
- 3 Cross coding of industry and occupation


> Korea's census reports on industry & occupation

- KOSTAT has been collecting industry & occupation data through census since 1960 (20% of population)
- Takes a long time to classify the data due to a big amount of self responses* which aren't refined well
 * Self response rate in Korea: (2015) 48.6%, (2020) 43.9%

- > Korea's Industry & Occupation Classification: KSIC (industry) & KSCO (occupation)
 - Hierarchical 5-digit number to identify a certain industry or occupation
 - Based on ISIC & ISCO (international classification)
 - Collected through KOSTAT's Population Census, Local Area Labor Force Survey, etc.
 - For census reports, only 4 digit codes are presented

> Previous classification schemes of industry & occupation code


Automatic coding system

- Keyword-based classification model
- High accuracy, but low coverage

- Determining the code by phone calls, discussions, etc.
 - → Takes a long time
- Difference between each coder's skill and ability
 - → Inconsistency problem

> Considering using artificial intelligence on industry & occupation coding...

- Aritifical intelligence
 - Data-driven approach: "Let the data teach model how to predict codes"
- What's different from the previous automatic coding system?
 - Wide coverage + 'Confidence level'

Previous study on industry & occupation code classification

- Research on Automatic Census Industry/Occupation Coding and Data Analaysis
 - Supported by KOSTAT, performed by FS (2020.6.~11.)
 - Used part of 2015 census dataset (400,000 + 600,000)
 - Comparison between coding results of 2015 census and AI model

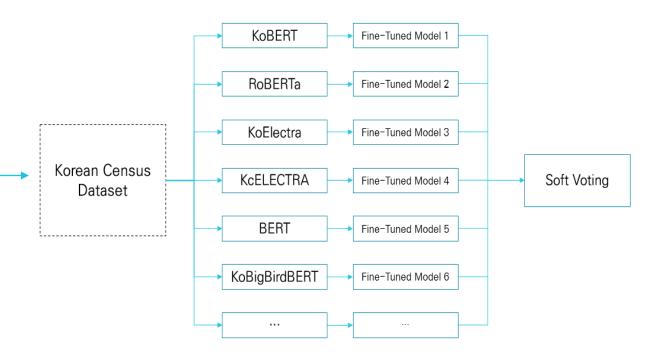
- ➤ KOSTAT's latest research performed by FS (2022.5.~11.)
- Main goal
 - To enhance rapidity & accuracy of industry/occupation coding procedures using AI
- Scope of the study
 - 1. Comparison between coding results of 2020 census and new AI model
 - Consistency rate by models / digits / phases
 - 2. Comprehensive analysis of inconsistency
 - Determining and categorizing causes of inconsistency
 - 3. Suggestions: How to apply AI on coding procedures
 - Finding the best combination of previous auto coding, manual coding and AI

2

A study on automatic classification using Al

> 1. Comparison between coding results of 2020 census and new AI model

1.1. Methodology


2020 Census dataset

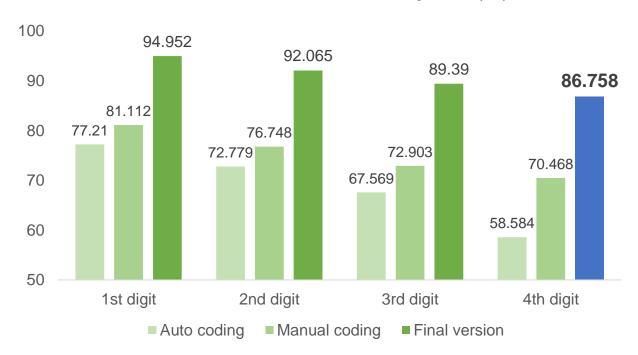
Usage	Auto coding	Manual	Final version	
Usage	File 1	File 2	File 3	File 4
Al learning & prediction				0
Comparing the results	0	0	0	0

Used items

- Industry: business name, business area, coding results
- Occupation: sex, age, education, place of work, position, department, individual task, coding results

Ensemble Model(Voting)

> 1. Comparison between coding results of 2020 census and new AI model

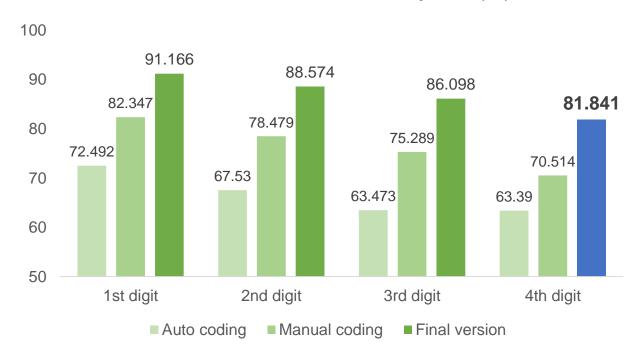

1.2. Consistency rate (Industry)

By models

Al Model	Consistency rate (%)			
Ensemble model	86.758			
KcBERT-large	85.889			
KoBigBirdBERT-base	85.830			
KcBERT-base	85.828			
BERT-base	85.707			
KcELECTRA v3 (Base Discriminator)	85.195			
RoBERTa-large	85.161			
RoBERTa-base	85.055			
RoBERTa-small	84.997			
KcELECTRA-base	84.711			
KoBERT	28.944			

By digits & phases

> 1. Comparison between coding results of 2020 census and new AI model


1.2. Consistency rate (Occupation)

By models

Al Model	Consistency rate (%)		
Ensemble model	81.841		
KoBigBirdBERT-base	81.045		
BERT-base	80.956		
KcBERT-base	80.808		
KcBERT-large	80.511		
KcELECTRA v3 (Base Discriminator)	80.227		
RoBERTa-base	80.130		
RoBERTa-small	80.117		
RoBERTa-large	80.023		
KcELECTRA-base	79.860		
KoBERT	29.677		

By digits & phases

> 2. Comprehensive analysis of inconsistency

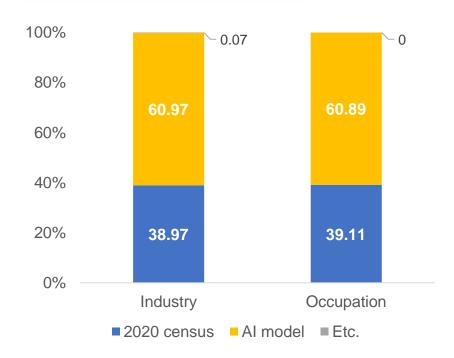
- 2.1. Coders' work on inconsistency
 - Skilled coders worked for months, analyzing 30,177 (ind.) & 32,024 (occ.) data
 - Choosing an appropriate code among 2020 census data and AI model's code
 - Determining the cause of inconsistency

Coders' work form on inconsistency

Industry

Text		Res	ults	Coders' choice			
Business name	Type of business	2020 census	Al	No.1 or	Cause(s) of inconsistency		
		No.1	No.2	No.2			
		Code/Name	Code/Name				

Occupation

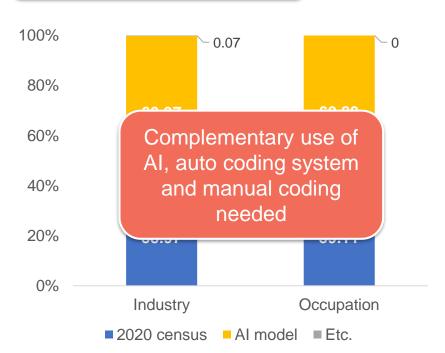

Text		Resi	ults	Coders' choice			
POSITION	Depart-	Individual	2020 census	Al	No.1 or	Cause(s) of inconsistency	
	ment	task	No.1	No.2	No.2		
			Code/Name	Code/Name			

2. Comprehensive analysis of inconsistency

2.2. Causes of inconsistency

Share of chosen code (%)

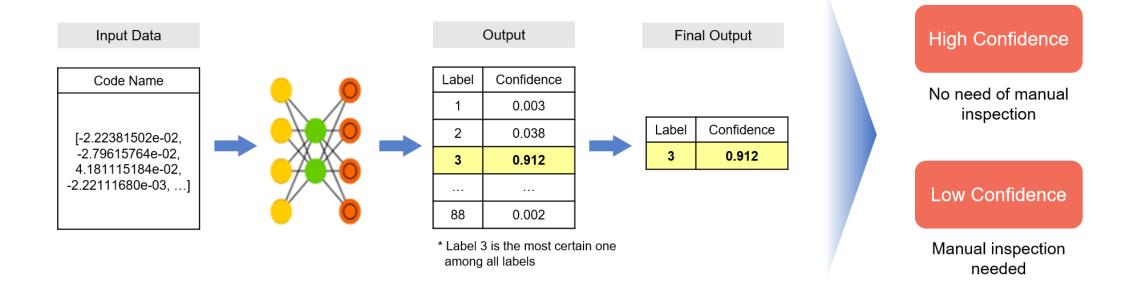
Major cause of inconsistency


Course of inconsistency	Indu	ıstry	Occupation		
Cause of inconsistency	Number	Share(%)	Number	Share(%)	
Uncertain meaning of the data	11,721	38.8	11,177	34.9	
Short length of the data	14,553	48.2	15,421	48.2	
Missing 'Business name' or 'Type of business'	1,298	4.3	4,026	12.6	
Related to 'Other' on taxonomy	53	0.2	0	0.0	
Additional info needed (e.g. sex, age, education,)	0	0.0	0	0.0	
Etc.	2,552	8.5	1,400	4.4	
Total	30,177	100.0	32,024	100.0	

2. Comprehensive analysis of inconsistency

2.2. Causes of inconsistency

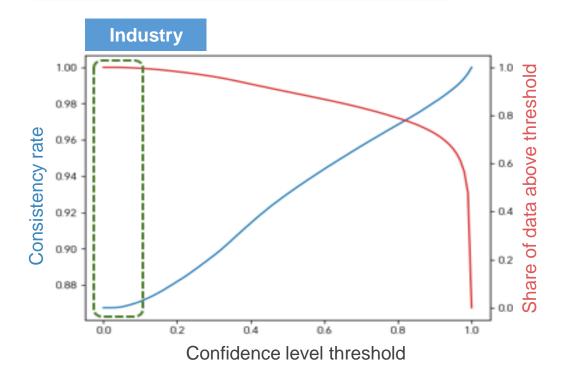
Share of chosen code (%)

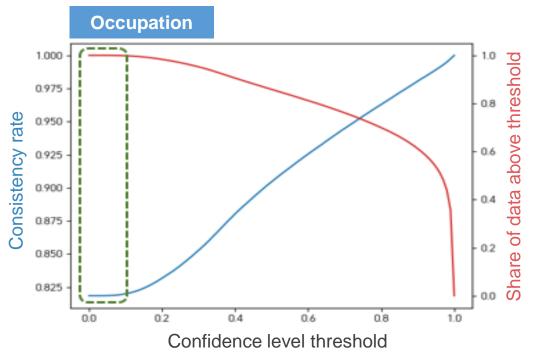

Major cause of inconsistency

Cause of inconsistency		Industry			Occupation	
		Number	Sha	are(%)	Number	Share(%)
Uncertain meaning of the o	11 791		38.8	11,177	34.9	
Short length of the dat	More accurate and ample data needed			48.2	15,421	48.2
Missing 'Business name' or 'Type				4.3	4,026	12.6
Related to 'Other' on taxon				0.2	0	0.0
Additional info needed (e.g. sex, age, education, .)	0		0.0	0	0.0
Etc.		2,552		8.5	1,400	4.4
Total		30,177		100.0	32,024	100.0

- > 3. Suggestions: How to apply AI on coding procedures
 - 3.1. Areas on which AI is applicable

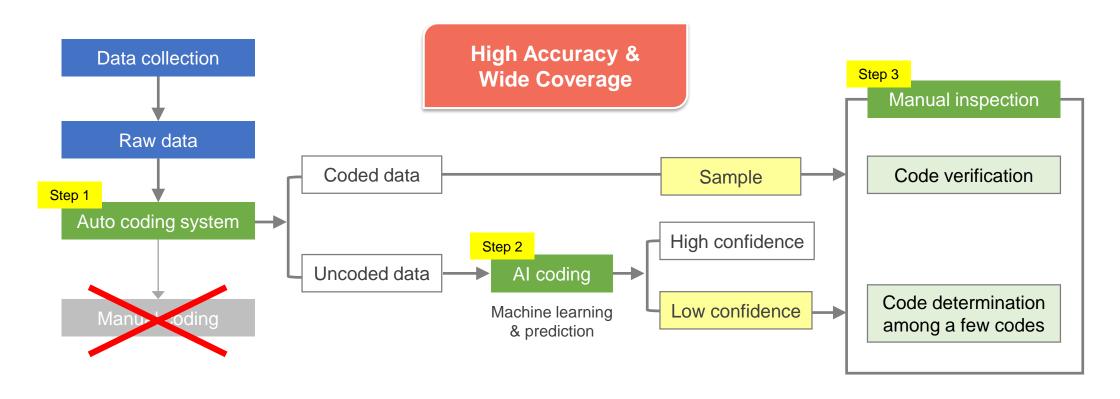
Al's work process





> 3. Suggestions: How to apply AI on coding procedures

3.1. Areas on which AI is applicable


Tradeoff between confidence & coverage

- > 3. Suggestions: How to apply AI on coding procedures
 - 3.2. Possible scenario for census data processing

Future plans

> Applying on 2025 Population & Housing Census 1st Pilot Survey

- 1st Pilot Survey: 2022. 10. 17. ~ 2022. 11. 18.
- There's no 'fixed answer' of the data: a good opportunity to verify AI's performance
- Comparing...
 - Previous auto coding system's codes for each data
 - Al model's top 3 codes for each data
- → Coders will determine which code is appropriate, so that we can clarify...
 - whether Al's performance is good enough or not to predict codes
 - if it is good enough, then to which area or phase that AI is applicable

Future plans

> Establishing census work process improvement plan

- Based on comprehensive consideration of research report and pilot survey analysis
- Re-establishment of census data processing: applying AI on industry & occupation classification

Developing "Next-generation Census Management System"

- Based on derived 'work process improvement plan'
- Developing an AI-based automatic coding system applicable for 2025 census data processing

